
Create your own
Z-Wave device

Сontents

Introduction
What is Z-Uno? 			 What is Arduino?
What is Z-Wave? 			 What is the difference between Z-Uno and Arduino?
What can I do with Z-Uno? 		 Share your experience!

First use
Connecting the Z-Uno to your PC 	 Uploading user sketch
Installing Arduino IDE 		 Including Z-Uno in Z-Wave controller
Z-Uno in Arduino IDE

Basic programming
setup and loop			 PWM
C language			 USB
delay				 Using breadboard
Input and output			 Precautions about connecting 5 V sensors
ADC

Z-Uno channels
Channels concept		 Sensor Binary
Switch Binary			 Meter
Switch Multilevel			 Combining several channels
Sensor Multilevel			 Controlling the Z-Uno from other Z-Wave devices

Controlling other Z-Wave devices from Z-Uno
Associations concept		 Scene activation
Setting Value			 Door lock operation
Dimming			 Controlling multiple devices on different events

More powering options
Battery devices
Sleeping
FLiRS

Security considerations

Debugging your code
Debugging via USB		 Rescue Mode
Compilation errors		 Factory Reset

Precautions and common errors

Z-Uno advanced features

Where to get more info?

4

6

10

16

24

30

34

34

36

38

38

4 5

What is Z-Uno?

What is Z-Wave?

What can I do with Z-Uno?

Z-Uno is a prototyping and development board
to build your own smart home and IoT devices
based on Z-Wave technology. Using Z-Uno
neither requires hard programming skills nor
a special expensive development environment.
Using Z-Uno is very simple.

With Z-Uno you can make devices similar to an existing one, as well as create entirely
new devices with more features or devices adopted to your own case. For example,
with Z-Uno you can make a ten channel Z-Wave switch, irrigation system controller
or a radiation sensor.

Z-Wave is the leading wireless technology for
smart homes and IoT. Z-Wave is used in millions
of smart homes worldwide.

Z-Wave is a mesh network — devices use their neighbours to route messages from
sender to destination device.

Compared to other technologies Z-Wave implies product certification to keep a very
high level of compatibility across brands. Z-Wave Alliance is in charge of protocol
evolution and compatibility tests. There are more than 1700 certified devices from
more than 450 Z-Wave Alliance members.

Creating your own Z-Wave devices requires a special toolkit and very deep program-
ming skills. Z-Uno solves this by providing an easy, but still powerful way to make
your own Z-Wave devices.

Introduction

Share your experience!

The Z-Uno community is very creative and likes to share. You can find many exam-
ples and projects made by other people on https://z-uno.z-wave.me/examples. Made
something worth sharing? Do not hesitate to send it to z-uno@z-wave.me.

This guide is released under a Creative Commons Attribution-ShareAlike 3.0 License.
You are free to use, modify and share it as long as you keep the same license and the
reference to the original artwork.

What is Arduino?

What is the difference between Z-Uno and Arduino?

Arduino is the name of very popular development and proto-
typing boards made for education and do-it-yourself. There
are many different variants and clones of Arduino boards
and many compatible hardware and peripheral solutions.
Think of Z-Uno as a variant of Arduino with built-in Z-Wave support.

To make your experience smooth and easy Z-Uno is using the same programming
environment as Arduino. Arduino IDE allows to easily write and upload your program
(called sketch) in your Z-Uno as well as to do simple debugging and upgrade it to the
latest version.

Most Arduino boards are based on an Atmel microcontroller from the AVR family.
In contrast, Z-Uno is based on a Sigma Designs microcontroller based on the Intel
8051 family. This implies some restrictions on big programs.

While choosing hardware for your Z-Uno from the Arduino world please note that
Arduino boards and compatible sensors are usually powered by 5 V, while Z-Uno
requires 3.3 V. Consider precautions on page 15.

https://z-uno.z-wave.me/examples
mailto:z-uno%40z-wave.me?subject=

6 7

First use

Connecting the Z-Uno to your PC

Installing Arduino IDE

Creating new devices with Z-Uno is simple:

•	 design your electrical schematics
•	 connect peripherals to Z-Uno according to the schematics
•	 write and upload your program into Z-Uno

To program Z-Uno connect it with a USB cable to a computer with Arduino IDE
installed. Once Z-Uno is programmed it can be disconnected from USB (if your Z-Uno
usage does not require USB connection).

Z-Uno can also be powered from 3.3 V (3V pin), 5 V (5V pin) or 7-18 V (Vin pin). On 3V
pin Z-Uno tolerates voltage in range from 2.8 to 3.6 V.

Arduino IDE is a user interface for editing and uploading new sketches to Z-Uno.
Arduino IDE is developed by https://arduino.cc and the Arduino Community world-
wide and can be downloaded from https://www.arduino.cc/en/Main/
OldSoftwareReleases#1.5.x

Do not connect more than one power source at a time.
This can damage the Z-Uno power circuit or your power
source.

Currently only version 1.6.5 of Arduino IDE is supported.

Z-Uno in Arduino IDE

Arduino IDE requires a special Z-Uno package. To install Z-Uno package first go
to Preferences (File > Preferences) and enter http://z-uno.z-wave.me/files/z-uno/
package_z-wave.me_index.json in Additional Board Manager URLs field. Then go
to Board Manager (Tools > Board > Board Manager) and scroll to Z-Uno package.
We suggest to always use the latest version of Z-Uno package. Once done, connect
your Z-Uno, In Tools > Board menu select Z-Uno board, in Tools > Port menu select
the port that is related with your Z-Uno and upgrade it’s bootloader code (Tools >
Burn Bootloader).

Picture 1. Installing Arduino IDE

Picture 2. Z-Uno in Arduino IDE

https://arduino.cc
https://www.arduino.cc/en/Main/OldSoftwareReleases#1.5.x
https://www.arduino.cc/en/Main/OldSoftwareReleases#1.5.x
http://z-uno.z-wave.me/files/z-uno/package_z-wave.me_index.json
http://z-uno.z-wave.me/files/z-uno/package_z-wave.me_index.json

8 9

Picture 3. Z-Uno in Arduino IDE Picture 5. Uploading user sketch

Picture 4. Z-Uno in Arduino IDE
Every few months a new version of Z-Uno package is released. Use Board Manager
to update and then upgrade Z-Uno bootloader again.

Uploading user sketch

To upload user program to your Z-Uno use Upload button in Arduino IDE.

User sketch can also be loaded wirelessly via Z-Wave protocol (so called Over-The-Air
or OTA). See online manual for more details.

10 11

Including Z-Uno in Z-Wave controller

To fully benefit from your Z-Uno, include it in your Z-Wave network. For this turn your
controller in Inclusion (Add) mode (refer to the user manual of your Z-Wave controller)
and then start Learn mode on Z-Uno by pressing three times the Service button.

Sometimes user sketch prevents Z-Uno from entering into Learn mode. Use Rescue
Mode to temporarily disable user sketch.

Z-Uno is a Z-Wave Plus certified device and should work with any Z-Wave controller.
But some controllers have limited support for multiple channels, security or certain
types of sensors. To fully benefit from your Z-Uno we suggest to use RaZberry or other
Z-Way based controller. See https://razberry.z-wave.me for more info.

Basic programming

If you are already familiar with Arduino programming you can skip this part. Making
Z-Uno we tried to keep it very similar to Arduino to make it easy for Arduino users.
Most of the functions have the same syntax. Still there is a slight difference in some
aspects. Please refer to Z-Uno programming reference on https://z-uno.z-wave.me/
Reference.

setup and loop

Like in Arduino, Z-Uno user code starts with setup function. The code in setup
is executed only once on Z-Uno power on as well on any Z-Uno wake up (for FLiRS
or Sleeping devices).

It is a good practice to place here code that initializes hardware and connected
peripherals. For example, instruct Z-Uno to set pins in input or output mode or set
UART speed to 115.2 kbps.

Once Z-Uno has started, loop function is called eternally when Z-Uno is idle. This is the
right place to poll sensor values, talk to peripherals and control other Z-Wave devices.
It is a good practice to place a small delay at the end of loop function to slow down
sensors polling.

One can define own functions and call them from setup and loop.

C language

Z-Uno uses a simplified C++ language. In most programs
you will need only simple C syntax constructions like:

•	 Conditional statements and loops: if-else, switch, for,
while, do

•	 Variables definition: byte, int, long, char
•	 Math operations: +, -, *, /, %, ^, ++, --
•	 Comparisons: ==, !=, >, <, >=, <=

We assume the reader is familiar with basics of C. Complete language reference
is available on https://z-uno.z-wave.me/Reference.

delay

Sometimes you might need to pause your program for some amount of time. This is
done using the delay function. It is important to know that unlike Arduino, Z-Uno will
continue to execute system code like Service button handling, Z-Wave radio transmis-
sion and even requests from and replies to Z-Wave network.

Input and output

The Z-Uno has 26 pins for connecting external peripherals. Many sensors and actors
work with a digital signal: interprets pin low voltage (0 V) as binary 0 and high voltage
(3.3 V) as binary 1. (In fact Z-Uno will consider any value in range 0–1 V as 0 and
1.5–3.3 V as 1, voltage between those ranges can return unpredictable values). Z-Uno
can communicate and control such hardware using digitalRead and digitalWrite
functions.

digitalRead(pin) returns LOW or HIGH values depending on the state of pin.
digitalWrite(pin, value) sets the voltage on pin 0 V if value is LOW or 3.3 V otherwise.
pinMode(pin, mode) is used to change mode of the pin: OUTPUT (0 or 3.3 V), INPUT
(three state for read) or INPUT_PULLUP (pulled to 3.3 V for read). INPUT_PULLUP
is used when your sensor can remain pin in floating state — pin is pulled to 3.3 V
in that case.

https://razberry.z-wave.me
https://z-uno.z-wave.me/Reference
https://z-uno.z-wave.me/Reference
https://z-uno.z-wave.me/Reference

12 13

Example 1. Using built-in button and LED. If button pressed LED shines

byte buttonState;			 // Variables we use in this sketch

void setup() {			 // This function will run once
pinMode(23, INPUT_PULLUP);	 // Set digital pin as output. Use Service button
pinMode(13, OUTPUT);		 // Set digital pin as input. Use built-in LED

}

void loop() {			 // This function will run in a loop
buttonState = digitalRead(23);	 // Read state of the Service button
digitalWrite(13, buttonState);	 // Set LED state to the same state as the button
delay(100);			 // Repeat every 100 ms

}

ADC

PWM

Sometimes you need to measure a voltage in the range 0–3.3 V and convert it into an
integer value range. This is called Analog-to-Digital Converter or ADC. Z-Uno provides
four ADC pins and analogRead(pin) function. Pin number is referenced as A0, A1, A2
or A3 according to Z-Uno schematics. By default analogRead returns values from 0 to
1023 corresponding to voltage in range from 0-Vcc, where Vcc is the voltage on Z-Uno
3V pin (it might be 3 V or 3.3 V depending on how you power Z-Uno). Online you can
find more info on ADC features.

Z-Uno can only produce 0 or 3.3 V voltage on its pins. But you can switch it very fast.
This is called Pulse Width Modulation (PWM). By changing the ratio between low and
high voltage periods you can control the brightness of the connected LED. There are
four PWM pins referenced as PWM1, PWM2, PWM3 and PWM4 that are controlled via
the analogWrite(pin, value) function that accepts values in the range 0–255.

USB

The simplest way for Z-Uno to communicate with your computer is through USB. The
same USB cable as used for programming can transfer messages between Z-Uno and
Arduino IDE Serial Monitor or any other serial communication program. To enable USB
communication put Serial.begin() in setup function and Serial.println(“text”) in the
place you need. Again, syntax is same as in Arduino.

Example 2. Adding analogWrite function to blink external LED on pin 14

byte buttonState;		
byte dimLevel = 0;		 // Added dimmer level variable with initial value 0

void setup() {			
pinMode(23, INPUT_PULLUP);	
pinMode(13, OUTPUT);		

}

void loop() {			
buttonState = digitalRead(23);	
digitalWrite(13, buttonState);	

dimLevel = 128 - dimLevel;	 // Values are 0% or 50% (0 or 128)
analogWrite(PWM2, dimLevel);	 // Set PWM2 (pin 14) to dimLevel

delay(100);			
}

Figure 1. Wiring diagram for examples 2-4

14 15

Precautions about connecting 5 V sensors

It is important to notice that many Arduino compatible sensors are powered from 5 V.
This is not a problem if you provide them dedicated power from a USB or external
source. But sometimes they also output 5 V on their pins and expect 5 V as input.

Z-Uno can be damaged by 5 V on any of its input/output
pins. Use voltage divider for input pins to down voltage
to 3.3 V. For example use 1 kΩ and 2 kΩ resistors.
Output pins in most cases can be connected directly —
most digital sensors interpret 3.3 V as high voltage.
If you still need to convert 3.3 V to 5 V output, use
transistor. Logic level converter can also be used.

Z-Uno can not source more than 8 mA on its pins.
If more is required, a transistor key should be used.

Maximum current sourcing from 5V pin is 900 mA,
from 3V pin is 200 mA.

Using breadboard
For faster prototyping we recommend to use breadboards. Z-Uno fits perfectly in stan-
dard breadboards. No soldering is needed to make Z-Wave devices!

Figure 2. Z-Uno pinout

0
1
2

24
25
3
4
5
6
7
8

3V3
23
22
21
20
19
18
17
16
15
14

11
10

13
12

9

PWM 1

ANT
ANT

LED
PWM 2
PWM 3
PWM 4

INT 1
INT 0

ADC 3
ADC 2
ADC 1
ADC 0
RX 0
TX 0

RX 1

INT 2
IR TX 2
IR TX 1
IR TX 0

TX 1IR RX

MOSI

SPI CS

MISO
SCK

Battery connectormicro
USB

Z-Wave chip

Wire antenna

User LED

LED
LED

Service LED
User LED

External connector

Service

GND
3V3

7-18V
5V

GND

Power Pin
GND Pin

Digital Pin
Analog Read Pin
Analog Write Pin

UART Pin
SPI Pin
Fast Pin, I2C, 1-Wire

Interrupt Pin
IR Pin
Antenna

LED
Button

Re
se

t

Se
rv

ice

16 17

Z-Uno channels

Built-in Z-Wave support is the distinctive feature of Z-Uno compared to other Arduino
boards. Z-Wave devices can present many different features to Z-Wave controller and
other devices in your Z-Wave network. Wireless Z-Wave communication is well struc-
tured to keep things compatible between different devices from different manufactur-
ers. Z-Uno inherits and extends Z-Wave concepts. The most important is Channel.

Channels concept

Switch Binary

Similar devices on the market

How to define

Z-Uno channel is a set of features available via the Z-Wave radio protocol. These
features allow you to control Z-Uno wirelessly as well as request current Z-Uno state.
Z-Uno supports few types of channels. Each channel is associated with some basic
functionality like on/off relay or dimmable light or idle/triggered alarm or an environ-
mental sensor. Think of a channel as a dedicated “device” inside the Z-Uno. Z-Uno
can host up to 10 channels simultaneously.

Channels are defined using special word ZUNO_SETUP_CHANNELS.

This type of channel is used to control a relay or turn on/off a light. It can only receive
two values from and report to the Z-Wave network: on or off. No other values are
possible.

There are a lot of similar devices on the market: lamp switches, sprinklers
control, power strip switches and many others.

The Switch Binary channel is defined using the ZUNO_SWITCH_BINARY
special word as follows:

getter and setters are names of functions.

ZUNO_SETUP_CHANNELS(ZUNO_SWITCH_BINARY(getter, setter));

Getter/Setter concept

Getter and setter are special functions that are called by the Z-Uno core when
Z-Wave communication occurs.

The setter is called when the Z-Wave Set command is received in the channel.
For example, when Switch Binary Set ON is received, the setter is called with
value 255 as a parameter. For the OFF command the parameter value is 0.
This allows the Z-Uno to handle actions coming from a controller or other
Z-Wave devices.

The aim of the getter function is to return the current state of the channel to
report it to the Z-Wave network. Getter is called in three cases:

•	 a Get command is received from the Z-Wave network,
•	 a Set command resulted in device state change or
•	 user code explicitly asked to send a report with the current state.

Getter and setter should work as fast as possible. The best is to just to return
current value and save new value in a variable. We recommend not to call any
heavy functions from getter and setter.

delay function will be ignored in getter and setter.

Figure 3. Z-Uno new value set

18 19

Reporting values to Z-Wave controllers, LifeLine

Channel reports can be solicited or unsolicited.

Solicited reports are a result of a Get command received by the Z-Uno. In that
case the report is sent back to the asker.

Unsolicited reports happen when a device state changes due to the Set
command or when a user explicitely instructs the Z-Uno to send a report.
Unsolicited reports are sent only to a limited list of devices called the LifeLine
group (this is a Z-Wave commonly known term). This group is managed
like other associations (see page 24) by the Z-Wave controller and usually
it contains only the controller itself.

To force Z-Uno to send report for a channel use the function
zunoSendReport(channelNumber).

This function will internally call the getter function and then send reports to the
LifeLine group.

The figures 4 and 5 show how the Z-Wave controller interacts with Z-Uno user
code via getters and setters.

Figure 4. Z-Uno solicited report Figure 5. Z-Uno unsolicited report

Example 3. Added Switch Binary channel to control built-in LED

byte buttonState;
byte dimLevel = 0;
byte ledLevel = 0;		 // Adding LED level variable with initial value 0

ZUNO_SETUP_CHANNELS(ZUNO_SWITCH_BINARY(getterLED, setterLED));
				 // Adding switch binary channel

void setup() {			
pinMode(23, INPUT_PULLUP);	
pinMode(13, OUTPUT);		

}

void loop() {			
buttonState = digitalRead(23);	 // Not used in this sketch
digitalWrite(13, ledLevel);	 // LED value is not set in the channel setter

dimLevel = 128 - dimLevel;
analogWrite(PWM2, dimLevel);

delay(100);			
}

void setterLED(byte value) {	 // This function accepts new channel value
ledLevel = value;		 // Save new value to use in loop and getter

}

byte getterLED() {		 // This function should report channel value
return ledLevel;		 // Report the saved value

}

20 21

Sensor BinarySwitch Multilevel

Similar devices on the market

How to define

How to define

This type of channel is used to report events from security or any other binary sensors.
They can only report two values: on (triggered) or off (idle). No other values are possible.

This type of channel is used to control dimmable loads like light lamps. It can only
receive values in the range 0 (off) to 99 (maximum level). The special value 255 means
set last or maximum (depending on what you decide). Reported values should be in the
range 0–99.

Most of the security sensors belong to this type of devices: motion, door/
window, smoke, leakage sensors and many others.

Sensor Binary channel is defined using the ZUNO_SENSOR_BINARY special
word as follows:

Switch Multilevel channel is defined using the ZUNO_SWITCH_MULTILEVEL
special word as follows:

Unlike the Switch Binary channel, the Sensor Binary channel does not have
a setter function, since it can only report values.

Parameter type defines the type of the sensor. See online reference for more
info. For your comfort there are predefined strings like ZUNO_SENSOR_
BINARY_MOTION(getter), ZUNO_SENSOR_BINARY_DOOR_WINDOW(getter),
ZUNO_SENSOR_BINARY_WATER(getter) and others described in the online
reference. As with other channels, reports are sent to the LifeLine group
(unsolicited) or to the asker (solicited).

ZUNO_SETUP_CHANNELS(ZUNO_SENSOR_BINARY(type, getter));

ZUNO_SETUP_CHANNELS(ZUNO_SWITCH_MULTILEVEL(getter, setter));

Sensor Multilevel

How to define

This type of channel is used to report environmental sensor values like temperature,
luminance, humidity, pressure, radiation, velocity and others. Z-Wave defines a set
of possible sensor types and scales.

Sensor Multilevel channel is defined using the ZUNO_SENSOR_MULTILEVEL
special word as follows:

Parameter type defines the type to be reported with the value. Possible values
are described in the Z-Uno online reference.

Parameter scale_size_precision defines the scale and precision of the value
to be reported.

But we recommend using predefined strings like ZUNO_SENSOR_
MULTILEVEL_TEMPERATURE(getter), ZUNO_SENSOR_MULTILEVEL_
HUMIDITY(getter) and others (check Z-Uno online reference for more) instead
of a more general ZUNO_SENSOR_MULTILEVEL.

ZUNO_SETUP_CHANNELS(ZUNO_SENSOR_MULTILEVEL(type, scale_size_precision, getter)); Meter

How to define

This type is very similar to the Sensor Multilevel, but for meter types: water, electrical
and gas meters.

Like with the Sensor Multilevel, for Meter we recommend using predefined
strings: ZUNO_METER_ELECTRIC_KWH(getter, resetter), ZUNO_METER_
GAS(getter, resetter) or ZUNO_METER_WATER(getter, resetter). Meter
channel allows an additional resetter function to reset accumulated value
to zero.

22 23

Combining several channels

The Z-Uno allows up to ten channels. Any type of channels can be combined. For
example, to define a double relay with two electrical meters and a temperature sensor
use:

In this example the Z-Uno will create five channels: relay 1 (channel #1), relay 2 (channel
#2), meter 1 (channel #3), meter 2 (channel #4), temperature sensor (channel #5).

The channel number (order in the definition above) is to be used in the zunoSendReport
function to send an unsolicited report.

ZUNO_SETUP_CHANNELS(
ZUNO_SWITCH_BINARY(getterCh1, setterCh1),
ZUNO_SWITCH_BINARY(getterCh2, setterCh2),
ZUNO_METER_ELECTRIC_KWH(meterCh1, resetterCh1),
ZUNO_METER_ELECTRIC_KWH(meterCh2, resetterCh2),
ZUNO_SENSOR_MULTILEVEL_TEMPERATURE(tempGetter));

Controlling the Z-Uno from other Z-Wave devices

Not only the Z-Wave controller, but any other Z-Wave device in your network can
control the Z-Uno. This is done by sending a Get or Set command to the desired
channel of the Z-Uno.

For example, a Z-Wave remote control can directly send commands to the Z-Uno
Switch Binary or Switch Multilevel channels. Or a Z-Wave door sensor can send
a direct command to the Z-Uno upon a door open event. Thanks to this, the Z-Uno
can be part of your smart home.

Example 4. Adding Sensor Binary and Switch Multilevel channels

byte buttonState;
byte sensLastState;		 // Variable to store sensor binary value
byte dimLevel = 0;
byte ledLevel = 0;

ZUNO_SETUP_CHANNELS(
ZUNO_SWITCH_BINARY(getterLED, setterLED),
ZUNO_SWITCH_MULTILEVEL(getterDimmer, setterDimmer),
ZUNO_SENSOR_BINARY_GENERAL_PURPOSE(getterButton)

);				 // Adding two more channels

void setup() {			
pinMode(23, INPUT_PULLUP);	
pinMode(13, OUTPUT);		

}

void loop() {			
buttonState = digitalRead(23);	 // If state changes, send unsolicited report
if (sensLastState != buttonState) {

zunoSendReport(3);		 // Send it. Sensor binary channel is #3
sensLastState = buttonState;	 // Update last sensor state

}

digitalWrite(13, ledLevel);

analogWrite(PWM2, dimLevel);	 // Dimmer level is now set in channel setter

delay(100);			
}

void setterLED(byte value) {
ledLevel = value;

}

byte getterLED() {
return ledLevel;

}

void setterDimmer(byte value) {	 // Setter for dimmer
dimLevel = value;

}

byte getterDimmer() {		 // Getter for dimmer
return dimLevel;

}

byte getterButton() {		 // Getter for binary sensor
return sensLastState;		 // Report sensor state

}

24 25

Controlling other Z-Wave devices from Z-Uno

As discussed above, any Z-Wave device in your network can control Z-Uno. But Z-Uno
is also able to control other devices in the network. To understand it we need to learn
the Association concept.

Associations concept

Setting Value

The Association group is a list of devices that receive some command on some par-
ticular event. The command depends on the Association group type. The event is user
defined. For example, Association group “turn on/off light on motion detected” should
send On/Off commands on motion detection events. Or group “open the lock on pin
code enter” should send an Open command to door locks in the group. Association
groups are managed by the Z-Wave controller.

This is the most common type of association — it sends Basic Set command (inter-
preted by switch devices as Switch Binary, by dimmers as Switch Multilevel). Here
is how to define such association:

To send a command from your code, use the following function:

The parameter groupNumber is the sequence of association group in the definition
(here it is 1).

The parameter value is the value to send. For switches values are interpreted as 0 for
Off and any in range 1–255 for On. For dimmers 0–99 is the % of brightness and 255
for maximum/last. More interpretations are defined in the Z-Wave protocol.

Each Association group can host up to 5 devices. This means all devices in the group
will receive the same command.

zunoSendToGroupSetValueCommand(groupNumber, value);

Dimming

Scene activation

This type is like the Setting Value, but also allows additional types of commands
for smooth dimming. Here is how to define such an association:

To send a command from your code, use the following function:

Parameter downUp is TRUE to start dimming down and FALSE to start dimming up.
Parameter startStop should be TRUE for start up/down command and FALSE for stop
command (downUp is ignored in that case).

Some devices accept scene numbers to activate some state in smart home devices
(dim light, open jalusie, roll up cinema screen, …). In Z-Wave this is done using Scene
Activation. This type of association can also be used to trigger scenes on the control-
ler. Define it as

To activate a scene use

zunoSendToGroupSetValueCommand(groupNumber, value);
zunoSendToGroupDimmingCommand(groupNumber, downUp, startStop)

zunoSendToGroupScene(groupNumber, sceneNumber);

ZUNO_SETUP_ASSOCIATIONS(
ZUNO_ASSOCIATION_GROUP_SET_VALUE

);

ZUNO_SETUP_ASSOCIATIONS(
ZUNO_ASSOCIATION_GROUP_SET_VALUE_AND_DIM

);

ZUNO_SETUP_ASSOCIATIONS(
ZUNO_ASSOCIATION_GROUP_SCENE_CONTROL

);

26 27

Door lock operation

The Z-Uno can also operate door locks with open and close commands. Such
commands are always sent with encryption to keep your house secure.

Define it as

To operate the lock use

Where state is 0 for closed and 255 for open.

zunoSendToGroupDoorlockControl(groupNumber, state)

ZUNO_SETUP_ASSOCIATIONS(
ZUNO_ASSOCIATION_GROUP_DOORLOCK

);

Example 5. Remotely control light and door lock with two buttons

byte buttonUpPressed = 0;		 // Is button Up pressed
byte buttonDownPressed = 0;	 // Is button Down pressed

ZUNO_SETUP_ASSOCIATIONS(// Two association groups
ZUNO_ASSOCIATION_GROUP_SET_VALUE,
ZUNO_ASSOCIATION_GROUP_DOORLOCK	 // Works only if Security is enabled in Z-Uno!

);

void setup() {			
pinMode(19, INPUT_PULLUP);	 // Two buttons to send On and Off
pinMode(20, INPUT_PULLUP);	 // Use internal pull up on both

}

void loop() {			
if (digitalRead(19) == LOW) {	 // Button Up is pressed

if (buttonUpPressed == 0) {	 // It was not pressed – press event detected
zunoSendToGroupSetValueCommand(CTRL_GROUP_1, 50);	 // Dim light to 50%
zunoSendToGroupDoorlockControl(CTRL_GROUP_2, 255);	 // Open the door
buttonUpPressed = 1;		 // Save the state not to send the command again

}
} else {

buttonUpPressed = 0;		 // Reset the state on release
}
if (digitalRead(20) == LOW) {	 // Button Down is pressed

if (buttonDownPressed == 0) {	 // It was not pressed – press event detected
zunoSendToGroupSetValueCommand(CTRL_GROUP_1, 0);	 // Turn off light
zunoSendToGroupDoorlockControl(CTRL_GROUP_2, 0);	 // Close the door
buttonDownPressed = 1;	 // Save the state not to send the command again

}
} else {

buttonDownPressed = 0;	 // Reset the state on release
}
delay(10);			 // Check buttons state every 10 ms

}

28 29

Figure 7. Wiring diagram for examples 5 and 6.
The two diods are needed for Z-Uno to wakeup in example 6

Controlling multiple devices on different events

You can define multiple Association groups. For example, we can define one group
to control light bulb brightness and another to open/close an entrance lock:

Z-Uno supports up to 5 association groups.

Note that Association groups as seen in Z-Wave controllers start from #2. Association
group #1 is always present and is called LifeLine. It is used in unsolicited reports
of channel states. See page 18 for more info.

ZUNO_SETUP_ASSOCIATIONS(
ZUNO_ASSOCIATION_GROUP_SET_VALUE,
ZUNO_ASSOCIATION_GROUP_DOORLOCK

);

Figure 6. Z-Uno Associations

30 31

More powering options

So far we were assuming the Z-Uno to be powered from some
power supply. But in many cases devices need to be powered
from a battery or even a solar battery. The Z-Wave protocol
is well known for being optimized for battery operated devices.
The Z-Uno allows to make battery operated devices too.

Battery devices

Sleeping

There are many examples of battery operated sensors: motion, temperature, leakage,
smoke, door/window and other types of sensors are often placed far from existing
power sources.

Note that battery operated devices are always tricky — they have to go into sleep
as soon as possible to save battery power. Hence, they are not reachable at any time
and need to wake up to send reports and control commands to associated devices.
Battery devices are also not participating in the mesh network — they don’t help others
to deliver messages, but do benefit themself from a Z-Wave mesh network.

Z-Wave defines two ways to save battery power to allow devices to live for years
on a single battery. The first way is to sleep all the time and wake up rarely periodi-
cally or on external events only. The second way is to wake up every second to check
if someone wants to talk to us.

In sleeping mode, the Z-Uno is consuming around 25 μA (can be tuned to less than
10 μA). This is virtually nothing. But to do something useful, the Z-Uno needs to wake
up and communicate with other Z-Wave devices.

Being asleep, the Z-Uno will wake up on the INT1 pin. Once voltage on this pin drops
to zero, the Z-Uno wakes up and starts executing user code. Like on Z-Uno power on,
the setup function will be executed first and then loop will be executed eternally until
the Z-Uno is instructed to go back to sleep.

In operating mode, the Z-Uno is consuming about 35–45 mA. Additional consumption
might come from connected peripherals.

Sending Z-Uno to sleep

Wakeup timer

Battery level

It is very important to do all tasks as fast as possible and send Z-Uno back
into sleep mode. This is done using the zunoSendDeviceToSleep function.
This function will only instruct the Z-Uno that user code do not need to stay
awake anymore. Z-Uno will finish its current jobs and go to sleep as soon as
possible.

Note that while being asleep, the Z-Uno is not reachable anymore. To request
new values or configure the Z-Uno, it must be woken up. There are three ways
to wake it up: on INT1 interrupt, on key scanner or on wakeup timer.

It is also important to wake up from time to time to inform the controller that
the device is alive and well. This allows the Z-Uno to do measurements and
possibly report them to the LifeLine group. This also allows the controller to
query the Z-Uno for remaining battery level, current channel values or do some
configurations.

The wakeup period can be configured from your Z-Wave gateway. The mini-
mum is 4 minutes, but in daily usage we recommend to set the wakeup period
as long as possible if the Z-Uno should react only on external events from
peripheral. For example, a door/window sensor needs to wake up only on an
INT1 pin state change. In contrast, a temperature sensor should wake up from
time to time to measure the current temperature.

Being set up in battery powered mode, the Z-Uno will automatically announce
to the controller that it can also report remaining battery level. The percentage
value will be measured on each Z-Uno wake up and reported to the LifeLine
group. The sleep mode is set as follows:

ZUNO_SETUP_SLEEPING_MODE(
ZUNO_SLEEPING_MODE_SLEEPING

);

32 33

byte buttonUpPressed = 0;
byte buttonDownPressed = 0;

ZUNO_SETUP_SLEEPING_MODE(ZUNO_SLEEPING_MODE_SLEEPING);
				 // Sleeping mode. Wake up on INT1
				 // Note the two diodes from buttons to INT1
ZUNO_SETUP_ASSOCIATIONS(

ZUNO_ASSOCIATION_GROUP_SET_VALUE,
ZUNO_ASSOCIATION_GROUP_DOORLOCK

);

void setup() {			
pinMode(19, INPUT_PULLUP);	
pinMode(20, INPUT_PULLUP);	

}

void loop() {			
if (digitalRead(19) == LOW) {	

if (buttonUpPressed == 0) {	
zunoSendToGroupSetValueCommand(CTRL_GROUP_1, 50);	
zunoSendToGroupDoorlockControl(CTRL_GROUP_2, 255);	
buttonUpPressed = 1;		

}
} else {

buttonUpPressed = 0;		
}
if (digitalRead(20) == LOW) {	

if (buttonDownPressed == 0) {	
zunoSendToGroupSetValueCommand(CTRL_GROUP_1, 0);	
zunoSendToGroupDoorlockControl(CTRL_GROUP_2, 0);	
buttonDownPressed = 1;	

}
} else {

buttonDownPressed = 0;	
}
if (buttonUpPressed == 0 && buttonDownPressed == 0) {	

zunoSendDeviceToSleep();	 // Send into sleep once buttons are released
}
delay(10);			

}

Example 6. Battery operated remote control FLiRS

Frequently Listening Routing Slave (or FLiRS) is the other way to save battery power.
In this mode, the Z-Uno will wake up for a very short time every second to listen for
a special “beam” packet. Such a packet is transmitted by the sender when it wants to
speak to a FLiRS device. This means that a FLiRS device can be reached at any time,
but it will take up to one second.

Once a “beam” packet is received, the Z-Uno will wake up completely following the
normal startup process and user code will be executed as usual: setup function first
and then loop until Z-Uno is sent back into sleep with zunoSendDeviceToSleep.

In FLiRS mode, the Z-Uno will also measure the battery power, but there is no wakeup
period to be defined (as the Z-Uno is waking up every second anyway).

FLiRS mode is set as follows:

The Z-Wave specification restricts which types of devices can be FLiRS to doorlock,
siren, water or gas valve.

ZUNO_SETUP_SLEEPING_MODE(
ZUNO_SLEEPING_MODE_FREQUENTLY_AWAKE

);

It is important to note that the Z-Uno memory is not retained
during sleep mode and all variables in are cleared and re-
initialized on each wakeup. To keep data across sleeps use
NZRAM (special type of memory) or EEPROM storage (see
online reference for more info).

34 35

Debugging your code

Debugging via USB

Compilation errors

The easiest way to debug your code is to enable USB com-
munication and print debug strings and variable values there.
Use the Arduino built-in Serial Monitor (Tools > Serial Monitor)
to read those strings on your computer.

Note that UART can be used instead of USB (change Serial to Serial0 or Serial1
depending on the pins chosen). For sleeping devices UART is better as USB
should be explicitly turned on.

If you get a compilation error but can not find the problem in your code, try to enable
verbose logging. For this go to Preferences (File > Preferences) and check Show
verbose output during compilation.

Example 7. Debugging with Serial (USB and UART)

int n = 0;

void setup() {
Serial.begin();			 // USB (Serial) do not require speed
// Serial0.begin(115200);		 // Serial0 and Serial1 need speed parameter
Serial.println("Starting...");	 // Print string with new line

}

void loop() {
Serial.println(n);		 // Print decimal number with new line
Serial.print(n, HEX);		 // Print heximal number without new line
Serial.println("h");		 // Print string with new line
delay(1000);

}

Rescue Mode

Factory Reset

Sometimes user code blocks USB communication, preventing further sketch upload
or is even claiming the Z-Uno is dead. This can happen due to many reasons: infinite
loop in user code, too slow operations in user code that breaks radio transmission,
entering sleep mode, stack overflow problems. In any of those cases, use the Rescue
Mode. In this mode, the Z-Uno starts with user sketch temporarily disabled (as no
user sketch is loaded). To revert back to normal mode, upload a new sketch or restart
Z-Uno by pressing the Reset button or by power cycling.

To erase Z-Uno configuration and Z-Wave network information, exclude it using
Exclusion mode in your Z-Wave controller.

You can also reset the Z-Uno via the Service button: hold the Service button for 5
seconds and then press three times.

User sketch is not deleted during reset or exclusion.

Security considerations

Z-Wave security ensures that your data is not intercepted, mangled or replayed
and authenticates the sender. To enable the security feature in the Z-Uno use
Tools > Security menu item.

While included securely, the Z-Uno will use strong AES encryption to transmit reports
and commands to other devices in the network. On first communication with a node,
the Z-Uno will automatically detect if the recipient supports secure communication
or not.

Non secure devices will not be able to control a secure Z-Uno.

36 37

Precautions and common errors

Don’t feed Z-Uno pins with more than 3.3 V

Always use limiting resistors on output pins

Do not bare antenna wire

I can not include Z-Uno

I can not find the serial port of my Z-Uno

This can damage the Z-Uno input pins. Always use a voltage
divider or a level converter when connecting higher voltages.

When connecting LED or other components to Z-Uno pin, don’t forget to limit the
current with a limiting resistor. This will prevent Z-Uno output pins from burning. We
recommend to use a 220 Ω resistor.

If you want to switch a bigger current than the Z-Uno can feed, use a relay or transis-
tor to switch an external power source. Don’t forget to use a limiting resistor when
connecting the relay or transistor.

An electrostatic discharge on the antenna wire can damage the Z-Uno chip.

Maybe your Z-Uno was included in another Z-Wave network? Try to exclude it first.

If this does not help, check that the Z-Uno frequency selected in Arduino IDE during
last sketch upload matches your Z-Wave network.

Does not help either? Disable user sketch by turning on the Rescue mode (see page
35). Finally, do Factory Reset (see page 35).

If your device is sleeping or user sketch runs into some slow job or infinite loop, the
USB port will not be available anymore. Use Rescue mode (see page 35) to restore
the USB connection and load a new sketch.

Z-Uno is not reachable by the controller

Integer type conversion

Changes in channels or associations are not applied

More troubleshooting

Stack overflow precautions

If your Z-Uno is in sleeping mode, you need to wake it up to allow communications
with the controller. Press the Service button three times. Maybe the frequency setting
has changed during the last sketch upload. Doublecheck it in Arduino IDE settings.

Your sketch might also prevent the Z-Uno from handling Z-Wave operations (you
created an infinite loop). Use the rescue mode to disable your sketch and upload
a correct one.

If the Z-Uno is too far from the controller or any other mesh capable Z-Wave device
in the network, it will also be unreachable. Move the Z-Uno closer to the controller.

While doing math operations with numbers, remember to explicitely specify the
space to work in if it should be bigger than the space of variables. For example, value
*99/255 will give a wrong result unless changed to (word) value *99/255.

Changes of channels or association number, types or order are not applied unless
the Z-Uno is excluded. This is because the Z-Wave protocol does not allow changing
those settings on the fly. Though you can bypass this restriction by enabling a special
configuration parameter (see online reference for more information).

More information can be found on https://z-uno.z-wave.me/getting-started/
troubleshooting.

Sometimes complex or big user code can lead to unexpected Z-Uno behavior
or hangs. Usually this is caused by stack overflow problems. Try to move local vari-
ables from functions in the global scope, lower the number of nested function calls
and number of parameters passed to functions.

https://z-uno.z-wave.me/getting-started/troubleshooting
https://z-uno.z-wave.me/getting-started/troubleshooting

38

Where to get more info?

Z-Uno advanced features

Z-Uno language reference https://z-uno.z-wave.me/Reference.
Examples of devices based on Z-Uno https://z-uno.z-wave.me/examples.

The Z-Uno is very powerful and it is not possible to cover all features in such a small
book. The following topics are outside of the scope of this book and can be found
in the online reference.

Advanced hardware features
Fast GPIO			 I2C
External interrupts		 IR
Key Scanner			 SPI
UART and USB			 GPT and Timers
1-wire				 EEPROM and NZRAM

Math operations

Libraries
Porting libraries from Arduino to Z-Uno
List of supported h/w or other features
Math

Tuning the Z-Uno
Configuration parameters 	 Desoldering of stub between INT1 and BTN
Security			 Optimizing power consumption
Multi Command		 Using OTA to upload sketches
External antenna soldering

Compiler tips & tricks
How to minimize stack usage
Using fixed point math instead of floating point math
How to use pointers
Deep inside interrupt handlers

Z-Wave certification requirements

https://z-uno.z-wave.me/Reference
Z-Uno https://z-uno.z-wave.me/Examples
https://z-uno.z-wave.me/examples

Read this book online:
https://z-uno.z-wave.me/QSG

This work is licensed under the Creative Commons
Attribution-Share Alike 3.0 Unported License.

To view a copy of this license visit:
http://creativecommons.org/licenses/by-sa/3.0/

https://z-uno.z-wave.me/QSG
http://creativecommons.org/licenses/by-sa/3.0/

